Structure Reports

Online
ISSN 1600-5368

Melamine (1,3,5-triazine-2,4,6-triamine): a neutron diffraction study at 14 K

A. Cousson, ${ }^{\text {a }}$ B. Nicolai ${ }^{\text {b }}$ * and F. Fillaux ${ }^{\text {c }}$

${ }^{\text {a }}$ Laboratoire Léon Brillouin, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France, 'baboratoire de Chimie Physique, Faculté de Pharmacie, Université Paris 5, 4 avenue de l'Observatoire, 75006 Paris, France, and ${ }^{\text {CLADIR-CNRS- }}$
Université Pierre et Marie Curie, 2 rue Henry Dunant, 94320 Thiais, France

Correspondence e-mail:
beatrice.nicolai@univ-paris5.fr

Key indicators

Single-crystal neutron study
$T=14 \mathrm{~K}$
Mean $\sigma(\mathrm{N}-\mathrm{C})=0.001 \AA$
R factor $=0.047$
$w R$ factor $=0.043$
Data-to-parameter ratio $=13.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The single-crystal neutron diffraction technique was used to determine the crystal structure of melamine, $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{H}_{6}$, at 14 K . The molecule is nearly planar. There are three crystallographically inequivalent amine groups with different geometries, the asymmetric unit being the complete molecule.

Comment

Melamine (1,3,5-triazine-2,4,6-triamine; Fig. 1), (I), is of industrial interest in the production of melamine-formaldehyde resins with high surface hardness, and good heat and flame resistance.

(I)

The compound has been studied extensively with spectroscopy techniques, either in the solid state or in the gas phase, with Raman and IR (Schneider \& Schrader, 1975; Meier et al., 1995; Wang et al., 1997) and inelastic neutron scattering (Fernandez-Liencres et al., 2001). Recently, there has been a growing interest in theoretical studies of the geometry of the isolated molecule. Different methods of molecular modelling, including ab initio and molecular dynamics calculations, have been used (Wang et al., 1993; Meier \& Coussens, 1990). The triazine ring was found to be nearly planar and the three amine groups are pyramidal. The calculated barrier of inversion is very low ($<1 \mathrm{kcal} \mathrm{mol}^{-1}$), indicating possible disorder of NH_{2} groups at room temperature.
The crystal structure of melamine has been determined at room temperature using both single-crystal X-ray and neutron diffraction techniques (Shanker et al., 1939; Hughes, 1941; Cromer et al., 1976; Larson \& Cromer, 1974; Varghese et al., 1977; Price et al., 1978) and under pressure (Ma et al., 2003).

In order to better understand the dynamics of the NH_{2} groups, we needed to know the position of the H atoms at low temperature. We have thus determined the structure by the single-crystal neutron diffraction technique at 14 K , after a preliminary study at 293 K .

The space group is monoclinic $P 2_{1} / a$, with four molecules per unit cell (Fig. 1). There is no evidence for any phase transition between 293 and 14 K . The lattice parameters are only slightly changed $[a=10.433$ (6) $\AA, b=7.458$ (6) $\AA, c=$

Received 28 October 2004
Accepted 16 December 2004 Online 8 January 2005
7.238 (5) \AA and $\beta=113.3(2)^{\circ}, c f . a=10.573(6) \AA, b=$ 7.463 (6) $\AA, c=7.268$ (5) \AA and $\beta=112.4$ (2) ${ }^{\circ}$ at 293 K$]$. The ring is nearly planar. There are three crystallographically inequivalent amine groups bound to the triazine ring. The three $\mathrm{C}-\mathrm{N}$ bonds are nearly coplanar with the ring. No disorder was observed. However, the amine groups have different configurations and destroy the $D_{3 h}$ symmetry of the isolated molecule indicated by ab initio calculations (Fig. 2).

The N3/H5/H6 amine group is pyramidal, with an N3$\mathrm{C} 3-\mathrm{N} 5-\mathrm{C} 1$ torsion angle of $176.64(8)^{\circ}$, and $\mathrm{H}-\mathrm{N}-\mathrm{H}$ and $\mathrm{C}-\mathrm{N}-\mathrm{H}$ angles of 114°. The two other amine groups, $\mathrm{N} 1 / \mathrm{H} 1 /$ H 2 and $\mathrm{N} 2 / \mathrm{H} 3 / \mathrm{H} 4$, are almost trigonal, with torsion angles close to $180^{\circ}\left[\mathrm{C} 3-\mathrm{N} 5-\mathrm{C} 1-\mathrm{N} 1=178.32(8)^{\circ}\right.$ and $\mathrm{C} 3-\mathrm{N} 4-$ $\mathrm{C} 2-\mathrm{N} 2=178.66(8)^{\circ}$] and $\mathrm{H}-\mathrm{N}-\mathrm{H}$ and $\mathrm{C}-\mathrm{N}-\mathrm{H}$ angles close to 119° (see Table 1). Atoms H2 and H3 are almost in the molecular plane. Atoms H1 and H4 deviate significantly from coplanarity with the triazine ring, with torsion angles greater than 10°.

The principal direction of maximum amplitude of each atom is approximately perpendicular to the molecular plane (Fig. 2). The $U_{\text {iso }}$ values of the ring N atoms are about 14% greater than those of the C atoms. This is in accordance with the flexibility of the molecule proposed by molecular calculations (Meier \& Coussens, 1990).

Experimental

White single crystals were obtained by slow evaporation of saturated aqueous solutions.

Crystal data

$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}_{6}$
$M_{r}=126.12$
Monoclinic, $P 2_{1} / a$
$a=10.433$ (1) A
$b=7.458$ (1) \AA
$c=7.238$ (1) \AA
$\beta=113.30(2)^{\circ}$
$V=517.26(14) \AA^{3}$
$Z=4$
$D_{x}=1.619 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Orphée reactor (Saclay, France):
5-C2 four-circle diffractometer ω scans
Absorption correction: none 2714 measured reflections 2327 independent reflections 1819 reflections with $I>3 \sigma(I)$ $R_{\text {int }}=0.08$

Refinement

Refinement on F

$R=0.047$

$w R=0.043$
$S=1.11$
1819 reflections
137 parameters
All H -atom parameters refined
Prince modified Chebychev polynomial (Watkin, 1994; Prince,
Neutron radiation
$\lambda=0.831 \AA$
Cell parameters from 15
\quad reflections
$\theta=32-44^{\circ}$
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=14 \mathrm{~K}$
Prism, white
$3.50 \times 3.00 \times 3.00 \mathrm{~mm}$

$\theta_{\text {max }}=42.6^{\circ}$
$h=-16 \rightarrow 16$
$k=-4 \rightarrow 12$
$l=-11 \rightarrow 11$
450 standard reflections
frequency: 2 min
intensity decay: none
1982): $w=[$ weight $]\left[1-\left(\| F_{o} \mid-\right.\right.$ $\left.\left.\left|F_{c}\right| / 6 \sigma F_{o}\right)^{2}\right]^{2}, 1.42,-1.26,0.982$, -0.228
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=1.81$
$\Delta \rho_{\text {min }}=-1.67$
Extinction correction: Larson (1970)

Extinction coefficient: 17.2 (5)

Figure 1

The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
The packing of molecules in the unit cell.

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

C1-N1	$1.3376(12)$	C3-N5	$1.3420(12)$
C1-N5	$1.3539(12)$	N1-H1	$1.017(3)$
C1-N6	$1.3475(12)$	N1-H2	$1.013(3)$
C2-N2	$1.3420(12)$	N2-H3	$1.003(3)$
C2-N4	$1.3497(12)$	N2-H4	$1.022(3)$
C2-N6	$1.3457(12)$	N3-H5	$1.022(3)$
C3-N3	$1.3618(12)$	N3-H6	$1.013(3)$
C3-N4	$1.3382(12)$		
N1-C1-N5	$117.02(8)$	H1-N1-H2	$119.6(2)$
N1-C1-N6	$118.30(8)$	C2-N2-H3	$118.49(18)$
N5-C1-N6	$124.68(8)$	C2-N2-H4	$119.59(17)$
N2-C2-N4	$116.94(8)$	H3-N2-H4	$119.0(2)$
N2-C2-N6	$117.77(8)$	C3-N3-H5	$114.42(17)$
N4-C2-N6	$125.28(8)$	C3-N3-H6	$115.30(17)$
N3-C3-N4	$117.88(8)$	H5-N3-H6	$113.9(2)$
N3-C3-N5	$116.34(8)$	C2-N4-C3	$114.53(7)$
N4-C3-N5	$125.76(8)$	C1-N5-C3	$114.76(7)$
C1-N1-H1	$118.42(17)$	C1-N6-C2	$114.87(7)$
C1-N1-H2	$118.91(17)$		
N3-C3-N5-C1	$176.64(8)$	H3-N2-C2-N6	$-7.47(17)$
C3-N5-C1-N1	$178.32(8)$	H4-N2-C2-N4	$13.01(17)$
C3-N4-C2-N2	$178.66(8)$	H5-N3-C3-N5	$25.12(17)$
H1-N1-C1-N1	$-94.89(7)$	H6-N3-C3-N4	$-21.30(17)$
H2-N1-C1-N5	$176.29(17)$		

organic papers

H atoms were refined anisotropically.

Data collection: DIF4N (modified Linux version of DIF4; Stoe \& Cie, 2000); cell refinement: DIF4N; data reduction: PRON (modified version of REDU4; Stoe \& Cie, 2000); program(s) used to solve structure: CRYSTALS (Watkin et al., 2001); program(s) used to refine structure: CRYSTALS; molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

The authors thank J. Godard of the Parc d'Orsay, France, for providing the single crystals.

References

Cromer, D. T., Larson, A. C. \& Stewart, R. F. (1976). J. Chem. Phys. 65, 336349.

Fernandez-Liencres, M. P., Navarro, A., Lopez-Gonzalez, J. J., FernandezGomez, M., Kearley, G. J. \& Fernandez-Diaz, M. T. (1997). Spectroscopy of Biological Molecules: Modern Trends. Seventh European Conference on Spectroscopy of Biological Molecules, Madrid.
Fernandez-Liencres, M. P., Navarro, A., Lopez-Gonzalez, J. J., FernandezGomez, M., Tomkinson, J. \& Kearley, G. J. (2001). Chem. Phys. 266, 1-17.
Hughes, E. W. (1941). J. Am. Chem. Soc. pp. 63-70.

Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.

Larson, A. C. \& Cromer, D. T. (1974). J. Chem. Phys. 60, 185-192.
Ma, H. A., Jia, X., Cui, Q. L., Pan, Y. W., Zhu, P. W., Liu, B. B., Liu, H. J., Wang, X. C., Liu, J. \& Zou, G. T. (2003). Chem. Phys. Lett. 368, 668-672.

Meier, J. \& Coussens, B. (1990). J. Mol. Struct. Theochem, 209, 303-312.
Meier, R. J., Maple, J. R., Hwang, M. J. \& Hagler, A. T. (1995). J. Phys. Chem. 99, 5445-5456.
Price, P. F., Varghese, J. N. \& Maslen, E. N. (1978). Acta Cryst. A34, 203-216.
Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
Schneider, J. R. \& Schrader, B. J. (1975). J. Mol. Struct. 29, 1-14.
Shanker, J., Baljekar Prabhakar, N. \& Prasad, M. (1939). J. Indian Chem. Soc. pp. 16-20.
Stoe \& Cie (2000). DIF4 and REDU4. Stoe \& Cie, Darmstadt, Germany.
Varghese, J. N., O’Connell, A. M. \& Laslen, E. N. (1977). Acta Cryst. B33, 2102-210.
Wang, Y., Mebel, A. M., Wu, C., Chen, Y., Lin, C. \& Liang J. (1997). J. Chem. Soc. Faraday Trans. 93, 3445-3451.
Wang, Y., Pittman, C. U. \& Saebo, S. (1993). J. Org. Chem. 58, 30853090.

Watkin, D. J. (1994). Acta Cryst. A50, 411-437.
Watkin, D. J., Prout, C. K., Carruthers, J. R., Betteridge, P. W. \& Cooper, R. I. (2001). CRYSTALS. Issue 11. Chemical Crystallography Laboratory, Oxford, England.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

[^0]: (C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

